Draft Genome Sequence of Clostridium ultunense Strain Esp, a Syntrophic Acetate-Oxidizing Bacterium

نویسندگان

  • Shahid Manzoor
  • Bettina Müller
  • Adnan Niazi
  • Erik Bongcam-Rudloff
  • Anna Schnürer
چکیده

Clostridium ultunense strain Esp belongs to the functional group of syntrophic acetate-oxidizing bacteria (SAOB), which have been identified as key organisms for efficient biogas production from protein-rich materials. Genome analysis and comparative genomics might aid us to define physiological features that are essential for maintaining this particular syntrophic lifestyle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Draft Genome Sequence of Clostridium ultunense Strain BS (DSMZ 10521), Recovered from a Mixed Culture

Clostridium ultunense BS is the first isolated strain (type strain) of C. ultunense that was identified as a mesophilic syntrophic acetate-oxidizing bacterium (SAOB). Here, we report the draft genome sequence of this strain, which will help us to elucidate the mechanism of syntrophic acetate oxidization.

متن کامل

Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium.

A syntrophic acetate-oxidizing bacterium, strain BST (T = type strain), was isolated from a previously described mesophilic triculture that was able to syntrophically oxidize acetate and form methane in stoichiometric amounts. Strain BST was isolated with substrates typically utilized by homoacetogenic bacteria. Strain BST was a spore-forming, gram-positive, rod-shaped organism which utilized f...

متن کامل

Working draft genome sequence of the mesophilic acetate oxidizing bacterium Syntrophaceticus schinkii strain Sp3

Syntrophaceticus schinkii strain Sp3 is a mesophilic syntrophic acetate oxidizing bacterium, belonging to the Clostridia class within the phylum Firmicutes, originally isolated from a mesophilic methanogenic digester. It has been shown to oxidize acetate in co-cultivation with hydrogenotrophic methanogens forming methane. The draft genome shows a total size of 3,196,921 bp, encoding 3,688 open ...

متن کامل

First Genome Sequence of a Syntrophic Acetate-Oxidizing Bacterium, Tepidanaerobacter acetatoxydans Strain Re1

Syntrophic acetate-oxidizing bacteria (SAOB) have been identified as key organisms for efficient biogas production from protein-rich materials. Tepidanaerobacter acetatoxydans is the first reported SAOB for which the genome has been sequenced. Genome analysis will aid us in understanding the mechanisms regulating syntrophy, particularly energy-conserving and electron transfer mechanisms.

متن کامل

Energy conservation in syntrophic acetate oxidation

Background: Thermacetogenium phaeum is a thermophilic strictly anaerobic bacterium oxidizing acetate to CO2 in syntrophic association with a methanogenic partner. It can also grow in pure culture, e.g., by fermentation of methanol to acetate. The key enzymes of homoacetate fermentation (Wood-Ljungdahl pathway) are used both in acetate oxidation and acetate formation. The obvious reversibility o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2013